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Mathematicians have shown that alternative models of the real number line exist, 
which have all properties of the usual real numbers (a complete ordered field). 
Since our conception of metric distances in space-time can be put in one-to-one 
relation with our conception of the real number line, if alternative models exist, it 
becomes a matter for experiment which model nature has chosen for physical 
space-time. We consider one such model in which ordinary real numbers are 
replaced by random variables and show that the model satisfies the 11 axioms of 
a complete ordered field. This model then is used to model metric distances in 
physical space-time and to explore the physical implications for the propagation 
of light. A nice feature of the model is that it provides a new conceptual 
framework for building a constant with dimensions of length into space-time. 
The Mbssbauer effect restricts this fundamental length to be less than 10 -24  cm. 

1. I N T R O D U C T I O N  

Toward the end of the last century, Riemann and other mathematicians 
developed self-consistent models of geometry which were non-Euclidean. 
This caused quite a stir in mathematical circles at the time, but only 
Einstein fully realized that if more than one mathematical formalism for 
geometry exists then it becomes a matter for experiment to decide which 
formalism best describes the geometry of physical space-time. Einstein's 
general relativity is now supported by numerous experiments and physical 
space-time in fact seems to be non-Euclidean. 

More recently, since 1963, another revolution has taken place in 
mathematics which is probably more fundamental in importance than the 
earlier geometrical revolution. Mathematicians have shown that there are 
alternative models for the real number line which are quite different in 
content from the standard model, and yet satisfy all the axioms for a 
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complete ordered field, which defines what we mean by a real number  line 
(Steen, 1971). There are two general types of alternative models. The first 
was developed by Robinson (1961, 1966) to incorporate actual infinitesimals 
into the real number  line. This has led to a formalism called nonstandard 
analysis, which has recently been applied to physics by Kelemen and 
Robinson (1972a, b). This model has the same physical content as the 
s tandard model and it has been shown that it is conservative in the sense 
that one can never obtain a result which could not have been obtained with 
standard analysis. The advantage of nonstandard analysis is that some 
calculations are much easier to do this way than with the usual analysis. It 
should be noted that the Robinson model is an ordered field but not a 
complete ordered field. Since completion involves second-order sentences 
while the other ten axioms for an ordered field involve first-order sentences 
and since most of calculus involves only first-order sentences, for most 
purposes completion is unnecessary. 

The other type of alternative model was developed by Cohen (1966) 
and by Scott (1967). This model arose from the desire to construct a model 
of the real number  line which contains a set which violates Cantor 's  
cont inuum hypothesis (the statement that every infinite set of real numbers 
is either countable or of cardinality c). Models of this type are now used 
extensively in mathematics and represent a complete ordered field. The 
objects of both  types of alternative model are real-valued functions f 
defined on some set S. The alternative real number  system then becomes 
R s, which is the set of all functions from S to R where R is the usual real 
number  line. One axiom defining a field is that for any real number  f except 
zero, there is another real number f -  ~ that satisfies f f -  ~ = u where u is the 
unit (existence of a multiplicative inverse). In the present context, if we have 
some functions f that do not have inverses, we still obey the axiom if we 
redefine truth so that " f  equals zero" will be true. More precisely, we 
substitute a probabilistic notion for truth or validity for the usual determin- 
istic one. For  example, " f  equals g "  where f and g are members of our 
alternative real number system becomes the measure m of the set S for 
which f ( s )  = g(s) or I f  = gl = m({s E S l f ( s )  --- g(s)}).  " f  equals g "  is 
valid if this probabili ty is one. Even though f ( s )  might not equal g(s)  for a 
large number  of points s ~ S, " f  equals g "  would be valid so long as the 
measure of this large number of points were zero. RS/m with this new 
concept of validity is always an ordered field. For some choices of S and m 
it will also be a complete ordered field. For the Robinson model mentioned 
above, S is the set of positive integers and m the cofinite measure (m = 0 
for finite sets, m = 1 for cofinite sets, and m = 0 or 1 for intermediate sets in 
some consistent way). For the Scott model S = I r which is the set of all 
functions f rom T (a set whose cardinal number is larger than c) to 1 (the 
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unit interval) and m is an extension of the Lebesque measure. This latter 
model is clearly vastly larger and richer than the usual model of the real 
numbers. 

In our work below we choose a particular alternative model of the 
general Cohen-Scot t  type and use it to model space-time metric distances. 
Physical space-time metric distances may be modeled by an alternative 
model rather than the standard model in which case our present conception 
of space and time may be fundamentally wrong. It becomes a matter of 
experiment which model of the real number line nature is chosen, especially 
if different models lead to different physical predictions. We show below 
that the particular R S / m  model we investigate makes predictions for the 
propagation of light different from the predictions of the standard model 
of the real number line. (For comparison, the nonstandard analysis of 
Robinson makes the same predictions as the usual real number line.) This 
arises from the probabilistic interpretation of validity mentioned above. 
When such a probabilistic model is substituted for the usual real number 
line, physical space-time metric distances themselves become probabilistic 
random variables, with physical consequences. This is highly reminiscent of 
the transition from classical to quantum physics but at a more basic level. 

The particular model we look at below uses a probability measure 
which involves a fundamental constant length o. We will find that o 
profoundly modifies the short distance behavior of space-time. Thus one 
way in which this work can be viewed is as a revolutionary way of building 
a fundamental  length into space-time, which is quite different from early 
work on discrete space and space-time (Heisenberg, 1938; Snyder, 1947; 
Hellund and Tanaka, 1954; Schild, 1949; Hill, 1955; Lanczos, 1964, 1966; 
Peters, 1974) or the more recent work on lattice gauge theories (Wilson, 
1974; Kogut, 1979; Drouffe and Itzykson, 1978). 

We discuss our probabilistic model of the real number line in Section 2 
below and prove that it satisfies the axioms for a complete ordered field. In 
Section 3 we consider this model of the real number line as modeling 
physical space-time metric distances. We apply our new model to physics in 
Section 4 by investigating the propagation of light. Finally in Section 5 we 
briefly summarize our findings. 

2. PROBABILISTIC M O D E L  OF THE REAL N U M B E R  LINE 

The particular model of the real number line we wish to consider is the 
simple model in which each element x ~ R of the usual real number line 
(which still has a role to play) has a random variable X(S, x)  associated with 
it where s ~ S and the probability space S will also be taken to be R. To 
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complete the description we also need a measure on S (actually on a sigma 
field of subsets of S)  which will be taken to be 

f ~ 1 1 

(2 , , ) , /2  o 

The random variable X(S, x) is thus a real-valued function defined on the 
sample space S with x denoting the mean of the random variable. [More 
technically, X(S, x) defined on S is a random variable if for every Borel set 
B in the real line R, the set {s; X(S,X)~ B} is in /7, a o field of subsets of 
S.] If  x = 3, for example, (1) gives the probability distribution for the 
random variable associated with x = 3 of the usual real number  line. This 
random variable has a mean of 3 and a variance of o. This measure gives 
the size of intervals [fl, a] on S and is normalized to 1 when the interval is 
taken to include the entire space S. The random variables X(S, x) will be the 
elements of our new real number line. o is a fundamental constant length 
which measures the size of the spread of the probability distribution. As 
o---, 0 the integrand in (1) becomes a delta distribution and the random 
variable X(S, x) essentially reduces back to x. In this limit, our new model 
of the real number  line reduces back to the usual model. Note that the 
constant  o is taken to be the same for all the random variables associated 
with all the different points of the original real number  line. Thus X(s, y) 
would be the random variable associated with y ~ R, where y is a different 
point from x. It would have the same measure m as in (1) but with y 
substituted for x. Thus our new real number line is a separate copy of S at 
every point in the usual real number line and is far larger than R. Note  that 
since the random variables X(S, x) associated with different points x have 
the same o, we are not considering the set of all functions from S ~ R as 
the RS/m models do. Our model will nonetheless be shown to satisfy the 11 
axioms for a complete ordered field below. 

The above model was chosen for simplicity. A normal distribution was 
chosen because of the statistical fact that whatever the distribution of a set 
of physical "measurements ,"  the distributions of many functions of them 
tend to normali ty when the number of "measurements"  tends to infinity. 
Using a normal  probabili ty distribution and the same ~ at every point of R 
is suggested by the physical picture of a space-time which is foamlike for 
very short distances with all points treated equivalently. Such a foamlike 
picture arises naturally from quantum effects in general relativity for 
distances of the order of the Planck length (hG/c3) 1/2 = l . 6 x 1 0  -33 cm 
(Misner et al., 1973). Our foam is of a different character than theirs, 
however, arising from the smearing of metric distances rather than from 
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topological changes. Presumably our o is comparable to the Planck length 
in size, although this is by no means necessary. (Our o has no relation to the 
infinitesimals of Robertson's work.) The present work can then be viewed as 
providing a new conceptual framework for considering such a foamlike 
structure. Although simplicity leads one rather naturally to our particular 
model, many other RS/m-type models exist, any one of which might be a 
better description of physical space and time. What is needed is a general 
principle which picks out a particular real number line just like the Hilbert 
action picks out a particular geometry in general relativity. Lacking such a 
principle, we can only explore plausible models. 

Before we show that our model satisfies all the axioms of a complete 
ordered field, we must discuss the ordering of the elements of our real 
number  line X(S', x) and X(S, y). This ordering must needs be probabilistic 
in nature. Using (1) we have 

P(x(r215 

[fs (2 r) 1/2 ! o 1 e-O'-')=/2~ 1 1 e_(X_S,)a/2O2ds,] 
(2~)1/= o 

& 

(2) 

for the probability that X(S', x)  > X(s, y). If we define a =- (y - x)/~/2o 
we can put (2) into the form 

1 1 L ~ e -  2~'erf( ct + P ( x ( s ' , x ) > x ( s , y ) ) =  2 2r ~)d~ (3) 

where erf is the error function. Integrating this for various values of a shows 
that 

We also have 

> 1 / 2  if x > y 

P ( x ( s ' , x ) > x ( s , y ) ) i s  =1/2 i f x = y  
< 1 / 2  if x < y 

(4) 

P ( x ( s ' , x ) > x ( s , y ) ) + P ( x ( s ' , x ) < x ( s , y ) ) = l  (5) 

as we would expect, o determines how far the probability distributions are 
spread out. If y - x = ~/2o, for example, we find P(X(S', x) > X(S, y)) = 
0.125 so that X(s', x) is greater than X(s, y) 1 /8  of the time even though y 
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is greater than x by v~-o. If y - x  = 37~'o, P(X(S', x)> X(S, y)) would 
already be quite small. 

Given any two random variables (elements of our new real number 
line), X(S', x) and X(S, y),  we can work out P(X(S', x) > X(S, y))  and use 
(4) to establish trichotomy with a probabilistic interpretation of validity. 
Thus if P(X(S', x) > X(s, y)) is 1 /2  we say the two "real numbers" X(S', x) 
and X(s, y) are equal. If this probability is > 1 /2  we say X(S', x) is greater 
than X(S, y) and if this probability is < 1 / 2  we say X(s',x) is less than 
X(S, y), thus establishing trichotromy. 

Having defined equality and established trichotomy, we are now in a 
position to show that our model satisfies the 11 requirements for a complete 
ordered field. We define addition and multiplication of our alternative real 
numbers by 

X(s ,x )+ x(s,  y ) -  X(s ,x  + y) (6) 

and by 

x(s,x).x(s, y)=- x(s,xy) (7) 

where x and y are usual real numbers. Note that (6) could have been 
written equally well as 

X ( s , x ) + x ( s ' , y )  = X(s" ,x  + y) (6a) 

I use the single letter s in (6) and (7) and also everywhere below for sim- 
plicity of notation and to emphasize that all the random variables have 
the same probability distribution associated with them with the same 
constant o. Thus (6a) means that the sum of alternative real numbers 
X(s, x) and X(S', y) is taken to be the alternative real number (random 
variable) whose mean is x + y and whose probability distribution has the 
same measure and the same variance o as the probability distributions of 
X(S, x) and X(s', y) themselves. Equality among our alternative real num- 
bers here and below is always understood in the probabilistic sense as 
explained above following (5), i.e., X ( s , x ) = x ( s , y )  if and only if 
P(X(S, x) > X(s, y))  = 1/2.  X(S, x + y) and X(S, xy) both clearly represent 
alternative real numbers, also, satisfying the first requirement. The associa- 
tivity, commutativity, and distributivity (requirements 2, 3, and 4) of our 
alternative real numbers follow very easily from (6) and (7). The fifth 
requirement is that there exist two special numbers z(zero) and u(urfit) that 
satisfy 0 + z = 0 and Ou = 0 for any generalized real number 0. In the 
present case, let X(s,O) be the zero and X(s,1) be the unit. From (6) and (7) 
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we clearly have 

and 

x(s, x)+ x(s,O) = x(s ,  +o) -- x) (8) 

x(s,x)-x(s,1) =xO, x) (9) 

as required. The additive inverse of X(S, x) can be taken to be X(S,-  x) 
where we have 

X ( S , x ) + x ( s , - x ) = x ( s , O )  (our zero) (10) 

satisfying property 6. Similarly, the multiplicative inverse of X(S, x) can be 
taken to be X(S, x-l). This satisfies 

X(S ,x) .x (s ,x -1)=X(S ,1  ) (our unit) (11) 

satisfying property 7. Property 8 is trichotomy: we have already shown 
above that given two of our real numbers X(S', x) and X(S, y), that we can 
consistently say whether X(S', x)  < X(S, y), X(S', x) = X(S, y), or X(S', x) 
> X(S, y) in a probabilistic sense. Transitivity (property 9) followed directly 
from (4) and from the fact that X(S', x)  > X(S, y)  in our probabilistic sense 
if and only if x > y for the ordinary real numbers x and y. Since ordinary 
real numbers obey transitivity, so will X(S', x) and X(S, y). Additive and 
multiplicative isotony (property 10) can be argued similarly: Assume 
X(S, x) < X(S, y) in our probabilistic sense. Then x < y from (4). Since 
ordinary real numbers obey additive isotony, we have x + w < y + w 
where w is any other ordinary real number. Again using (4), this implies 
X(S, x + w) < X(S, y + w) or from (6) we have 

x(s, x)+ x(s, w) < x(s, y)+ x(s, w) (12) 

where X(S, w) is any of our alternative real numbers, as we wanted to show. 
Multiplicative isotony follows similarly. For the eleventh and last property, 
completion, we want to show that if a set of our alternative real numbers 
has an upper bound, then it has a least upper bound. This is shown in the 
Appendix and relies on the fact that ordinary real numbers obey comple- 
tion, and (4) establishes a correspondence between ordinary real numbers 
and our alternative real numbers. 

We conclude that our simple probabilistic model satisfies all eleven 
requirements for a complete ordered field and thus is a viable alternative 
model of the real number line. It is different from the usual model in that 
(1) it is based on a probabilistic interpretation of equality and inequality 
and (2) a constant o is built in. 
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3. PHYSICAL SPACE TIME 

We now want to use our alternative real numbers to model space-time. 
The only place that the usual real number line plays a role in our descrip- 
tion of space-time is in the metric properties of the space-time. We will be 
interested in a Riemannian manifold (Choquet-Bruhat et al., 1977) which is 
a smooth manifold X (assumed finite dimensional here) together with a 
continuous 2-covariant tensor field g, the metric tensor, g is symmetric, and 
for each x ~ X, the bilinear form gx is nondegenerate so that gx(V,W) = 0 
for all V ~ T.,. (the tangent vector space) iff W = 0. Thus the metric g maps 
two elements of the tangent vector space onto the real number line, yielding 
the dot product  of the vectors. We will model these real numbers using our 
alternative model of the real number line. We can state this another way 
which more directly exhibits the space-time properties. If we introduce local 
coordinates, the metric tensor components gaa can be used to define the 
length of a piece of curve •  with Po~< P ~< P1 to be 

fp]'[ d X ~  dX/~]  1/2 
S= g'~P dP dP dP (13) 

The length S is a real number and we will model these real numbers using 
our alternative model. 

Representing the metric lengths S in (13) by our alternate model of the 
real number line means that the actual length of a given path whose 
nominal or average length is a given number S becomes a random variable 

where the probability that ~ will lie between the values a and fl is given 
by 

f ;  1 1 e_(~_s)2/2o2 df (14) 
( 2 ~ ) ' :  o 

can take any value but only values of f within several o of S are probable. 
We will explore in the next section what limits experiments put on the 
fundamental length o. 

Let us see with the above modifications whether we still have a true 
metric space. Very generally, a set M is called a metric space (Kuratowski, 
1966) if for each pair of elements x, y ~ M, the distance d(x, y) is defined, 
and satisfies 

d(x, y) >1 0 w i t h  d(x, y )  = 0 i f f  x = y 

d(x,y)=d(y,x) 

a(x, z) a<x, y)+ e(y, z) 

(15) 

(16) 

(17) 
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If these equalities and inequalities are all understood in the probabilistic 
sense  of our earlier discussion in (4) then we still have a metric space. 

We will be interested in the following in the propagation of light since 
it makes a nice example of how our alternative model of the real number 
line can affect physics. Light travels a "null"  geodesic so that we will 
assume that the nominal or average length of its path in space-time given by 
(13) is zero. The actual length of the null geodesic is then the random 
variable ~ with a probability 

f ;  1 1 e_~2/2o2 df (18) 
(2~)~/2  o 

of being between t~ and ft. The mean value of f is 

f 2 f  1)  1 _a2/2o2= - e 0 ( 1 9 )  
(2 , /2 o 

as we would expect. Thus the light cone is smeared out in a probabilistic 
sense by several o and we have lost strict microscopic causality on length 
scales of the order of o. On the average, causality is still preserved, but it is 
not preserved in detail on these length scales. This smearing of light cones 
due to our alternative model of the real number line has experimental 
consequences which we explore in the next section. We will try to put 
experimental limits on the size of the fundamental length o. 

4. EXPERIMENTAL CONSEQUENCES 

Let us look at the propagation of light more closely. If we specialize to 
flat space for simplicity, we have 

d S  2 = - d x  2 -}- c 2 d t  2 (20) 

where d S  2 is the square of the length of the infinitesimal line element. We 
can rearrange this to yield 

2 ( dS  ]2 (21) fl = 1 -  k ~--~] 

where fl is the actual coordinate velocity of light divided by c. If we let 
L = c A t  be the spatial length of the light path and let AS be given by the 
random fluctuation ~ in the length of the space-time geodesic, we have 
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approximately 

/32 = 1 -  ~A (22) 
L 2 

We get a significant change in /9 only for spatial paths whose lengths are 
comparable to o, i.e., very small, t9 is a measure of how far the light is off 
the mass shell. One can envision testing (22) directly using laser pulses of 
very short duration. The random fluctuation o will produce a random 
spreading of the arrival time of photons in a pulse containing many 
photons. Thus the time width of the packet can be related to ~ and can thus 
be used to put a limit on the fundamental length a. For observations over a 
spatial length L, the difference in arrival times of two photons, one of which 
is traveling with/9 given by (22) and the other traveling with/9 = 1 is 

L 1 ~2 
At = /9c c 2 L c  (23) 

assuming ~2/L2 << 1. Averaging over many photons using (18) gives 

foo ~2 1 1 e_r (24) 
(At)a . . . .  ge = - ~  2 L c  (2 , a . ) l / 2  or 

o r  

O 2 
(at)avora e---- 2LC (25) 

for the time width of the packet due to these effects. If we have a laser pulse 
with duration At - 10 -12  sec and observe it over L = 10 cm we have o < 0.8 
cm, which is not restrictive enough to be interesting. We need a better way 
to restrict o. 

fl in (22) is really a measure of how far the photon is off the "mass 
shell" or "energy shell." Thus the photon's energy or frequency varies 
because of (22). We can estimate the size of this effect by writing the total 
photon energy as 

MeffC 2 
E - (26) 

( 1 - / 9 2 )  1/2 

where Met t is the effective mass of the photon. Using (22) then gives 

Mof, c 2= ~ - e  (27) 

If we let Merrc 2 represent how far the photon is off the mass shell and write 
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Meuc 2 - h Av with E --- h~, we have finally 

A~, --. ~ (28) 
v L 

This should be a crude measure of how far the photon is off the mass shell 
due to the effects of our alternative model of the real number line. (The 
energy fluctuations we are discussing violate ultramicroscopic causality and 
also energy conservation for length scales on the order of o. This should not 
trouble the reader too much since o may be quite small, on the order of the 
Planck length - 10 -33 cm. At this distance scale it is known that quantum 
effects make the geometry a topological foam with causality and energy 
conservation meaningless. For length scales larger than this but smaller than 
elementary particle compton wavelengths, it is a matter of future experiment 
to see if detailed ultramicroscopic energy conservation holds.) We can use 
(28) to put a limit on o using the MOssbauer effect. Notice that Au/~, = 0 if 
we average over many photons as we might expect. Now M6ssbauer 
photons  f rom Fe 57 have an intrinsic frequency width of Av/~  =10  -t2. If 
observations can be made over a spatial length of 1 cm between absorber 
and emitter, (28) would imply that ~ must be smaller than about 10-12 cm 
for single photons. Thus the fundamental length o < 10-t2 cm also. If we 
focus on the absorption process or emission process itself and argue that the 
relevant length scale for L in (28) is the diameter of the Fe 57 nucleus, then 
we find o <10  -24 cm which is a much more interesting limit. 

5. SUMMARY AND C O N C L U S I O N S  

We have written down a particular alternative model of the real 
number  line and have shown that it satisfies the 11 axioms for a complete 
ordered field. This model was chosen with an eye toward physical applica- 
tions. Our pr imary purpose was to show that alternative models of the real 
number  line may model physical space-time better than the conventional 
model and to demonstrate that such probabilistic models may be very 
important  to physics. Other models exist besides the one we used, and some 
of these will undoubtedly fit physical space-time better than our model. 
Ult imately some physical principle must be used to select the correct model 
just  as the Hilbert  action chooses the correct physical geometry in general 
relativity. 

In using our alternative model of the real number  line to model 
physical space-time, we found that we built a constant o, with dimensions 
of length, into space-time in a very reasonable way. Various investigators 
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have a t tempted to do this for a long time. An alternative real number  line in 
fact provides a very rich new conceptual framework for this and other 
problems. 

In the final section above, we studied the effects of our alternative 
model of the real number line on the propagation of light. We found that 
both  the velocity of propagation and frequency might be expected to 
fluctuate. The MOssbauer effect was then used to put a limit of o <10 -z4 
cm on the allowed size of our fundamental length. 

APPENDIX 

We want  to show that if a set of our alternative real numbers has an 
upper  bound, then it has a least upper bound (completion property). 
Consider a set E of our alternative real numbers (X(s,  y ) , x ( s ,  z ) , - - .  } 
with an upper  bound X(s, xv)  so that X(S, y)  < X(s, xu )  (in our probabilis- 
tic sense) for all X(s, y ) ~  E. Now (4) allows us to associate with each 
member  X(s, y )  of E a corresponding ordinary real number  y since 
X(s, y )  < X(s, z)  (in our probabilistic sense) if y < z. These corresponding 
ordinary real numbers ( y, z, - �9 �9 } can be thought of as belonging to a set of 
ordinary real numbers F. x v will clearly be an upper bound to set F. Now 
since F is comprised of ordinary real numbers which satisfy completion, 
there must be a least upper bound x L to the set F, such that y < x L for all 
y ~ F  and x L<~x U for all upper bounds x U. But y < x  L ~ X ( s , y ) <  
X(s, xL) for all X(s, y)  ~ E and since x L <~ xt: =~ X(S, XL) <~ X(s, xv) ,  where 
X(s, xu )  is any upper bound for E, X(S, XL) is clearly a least upper bound 
for our set of alternative real numbers E as we wanted to show. 
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